二、 数论
1. 奇偶性问题
奇+奇=偶 奇×奇=奇
奇+偶=奇 奇×偶=偶
偶+偶=偶 偶×偶=偶
2. 位值原则
形如:abc =100a+10b+c
3. 数的整除特征:
整除数特征
2 末尾是0、2、4、6、8
3 各数位上数字的和是3的倍数
5 末尾是0或5
9 各数位上数字的和是9的倍数
11 奇数位上数字的和与偶数位上数字的和,两者之差是11的倍数
4和25 末两位数是4(或25)的倍数
8和125 末三位数是8(或125)的倍数
7、11、13 末三位数与前几位数的差是7(或11或13)的倍数
4. 整除性质
① 如果c|a、c|b,那么c|(a b)。
② 如果bc|a,那么b|a,c|a。
③ 如果b|a,c|a,且(b,c)=1,那么bc|a。
④ 如果c|b,b|a,那么c|a.
⑤ a个连续自然数中必恰有一个数能被a整除。
5. 带余除法
一般地,如果a是整数,b是整数(b≠0),那么一定有另外两个整数q和r,0≤r<b,使得a=b×q+r
当r=0时,我们称a能被b整除。
当r≠0时,我们称a不能被b整除,r为a除以b的余数,q为a除以b的不完全商(亦简称为商)。用带余数除式又可以表示为a÷b=q……r, 0≤r<b a=b×q+r
6. 唯一分解定理
任何一个大于1的自然数n都可以写成质数的连乘积,即
n= p1 × p2 ×...×pk
7. 约数个数与约数和定理
设自然数n的质因子分解式如n= p1 × p2 ×...×pk 那么:
n的约数个数:d(n)=(a1+1)(a2+1)....(ak+1)
n的所有约数和:(1+P1+P1 +…p1 )(1+P2+P2 +…p2 )…(1+Pk+Pk +…pk )
8. 同余定理
① 同余定义:若两个整数a,b被自然数m除有相同的余数,那么称a,b对于模m同余,用式子表示为a≡b(mod m)
②若两个数a,b除以同一个数c得到的余数相同,则a,b的差一定能被c整除。
③两数的和除以m的余数等于这两个数分别除以m的余数和。
④两数的差除以m的余数等于这两个数分别除以m的余数差。
⑤两数的积除以m的余数等于这两个数分别除以m的余数积。
9.完全平方数性质
①平方差: A -B =(A+B)(A-B),其中我们还得注意A+B, A-B同奇偶性。
②约数:约数个数为奇数个的是完全平方数。
约数个数为3的是质数的平方。
③质因数分解:把数字分解,使他满足积是平方数。
④平方和。
10.孙子定理(中国剩余定理)
11.辗转相除法
12.数论解题的常用方法:
枚举、归纳、反证、构造、配对、估计
① 凡本站注明“稿件来源:中国教育在线”的所有文字、图片和音视频稿件,版权均属本网所有,任何媒体、网站或个人未经本网协议授权不得转载、链接、转贴或以其他方式复制发表。已经本站协议授权的媒体、网站,在下载使用时必须注明“稿件来源:中国教育在线”,违者本站将依法追究责任。
② 本站注明稿件来源为其他媒体的文/图等稿件均为转载稿,本站转载出于非商业性的教育和科研之目的,并不意味着赞同其观点或证实其内容的真实性。如转载稿涉及版权等问题,请作者在两周内速来电或来函联系。